Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.757
Filtrar
1.
Nat Commun ; 15(1): 3699, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698035

RESUMO

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Assuntos
Archaea , Vírus de Archaea , Vírus de Archaea/genética , Archaea/genética , Archaea/virologia , Archaea/imunologia , Regiões Promotoras Genéticas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Virais/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Metagenoma/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética
2.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593609

RESUMO

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Assuntos
Acidithiobacillus , Cinética , Acidithiobacillus/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredução , Cobre/química , Cobre/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Biotecnologia/métodos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Técnicas Eletroquímicas/métodos , Transporte de Elétrons , Azurina
3.
Biochem Biophys Res Commun ; 712-713: 149893, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38657529

RESUMO

RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.


Assuntos
Methanocaldococcus , Modelos Moleculares , Methanocaldococcus/enzimologia , Cristalografia por Raios X , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Exonucleases/metabolismo , Exonucleases/química , Conformação Proteica , Sequência de Aminoácidos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673759

RESUMO

This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from Thermococcus sibiricus (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme. PEG contributes to the stabilization of the dimeric form of TsA, as shown by HPLC. Furthermore, neither polyamines nor PEG significantly affected the binding of the L-Asn substrate to TsA. The conjugates showed greater maximum activity at pH 7.5 and 85 °C, 10-50% more than for native TsA. The pH optima for both TsA-PEI and TsA-Spm conjugates were shifted to lower pH ranges from pH 10 (for the native enzyme) to pH 8.0. Additionally, the TsA-Spm conjugate exhibited the highest activity at pH 6.5-9.0 among all the samples. Furthermore, the temperature optimum for activity at pH 7.5 shifted from 90-95 °C to 80-85 °C for the conjugates. The thermal inactivation mechanism of TsA-PEG appeared to change, and no aggregation was observed in contrast to that of the native enzyme. This was visually confirmed and supported by the analysis of the CD spectra, which remained almost unchanged after heating the conjugate solution. These results suggest that TsA-PEG may be a more stable form of TsA, making it a potentially more suitable option for industrial use.


Assuntos
Asparaginase , Biocatálise , Estabilidade Enzimática , Thermococcus , Asparaginase/química , Asparaginase/metabolismo , Thermococcus/enzimologia , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Temperatura , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo
5.
Nat Commun ; 15(1): 3464, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658536

RESUMO

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Elementos de DNA Transponíveis/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Transposases/metabolismo , Transposases/genética
6.
Biochem Biophys Res Commun ; 714: 149966, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657448

RESUMO

U47 phosphorylation (Up47) is a novel tRNA modification discovered recently; it can confer thermal stability and nuclease resistance to tRNAs. U47 phosphorylation is catalyzed by Archaeal RNA kinase (Ark1) in an ATP-dependent manner. However, the structural basis for tRNA and/or ATP binding by Ark1 is unclear. Here, we report the expression, purification, and crystallization studies of Ark1 from G. acetivorans (GaArk1). In addition to the Apo-form structure, one GaArk1-ATP complex was also determined in atomic resolution and revealed the detailed basis for ATP binding by GaArk1. The GaArk1-ATP complex represents the only ATP-bound structure of the Ark1 protein. The majority of the ATP-binding residues are conserved, suggesting that GaArk1 and the homologous proteins share similar mechanism in ATP binding. Sequence and structural analysis further indicated that endogenous guanosine will only inhibit the activities of certain Ark1 proteins, such as Ark1 from T. kodakarensis.


Assuntos
Trifosfato de Adenosina , Modelos Moleculares , Cristalografia por Raios X , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Sequência de Aminoácidos , Conformação Proteica , Ligação Proteica , Sítios de Ligação
7.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
8.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38375885

RESUMO

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Assuntos
Pseudouridina , RNA Arqueal , RNA de Transferência , Sulfolobus , Pseudouridina/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Arqueal/química , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Processamento Pós-Transcricional do RNA , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
9.
Mol Microbiol ; 121(5): 882-894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372181

RESUMO

The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.


Assuntos
Lipídeos de Membrana , Thermococcus , Lipídeos de Membrana/metabolismo , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerila/metabolismo , Proteínas Arqueais/metabolismo , Archaea/metabolismo , Lipídeos/química
10.
Nat Commun ; 15(1): 1414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360755

RESUMO

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
11.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38197228

RESUMO

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus , Proteínas Argonautas , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas/metabolismo , Domínios Proteicos , RNA Guia de Sistemas CRISPR-Cas , Proteínas Arqueais/metabolismo
12.
Proteins ; 92(6): 768-775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235908

RESUMO

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Assuntos
Sequência de Aminoácidos , Proteínas Arqueais , Guanosina Trifosfato , Magnésio , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool) , Thermococcus , Thermococcus/enzimologia , Thermococcus/genética , Thermococcus/química , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Magnésio/metabolismo , Magnésio/química , Mutagênese Sítio-Dirigida , Domínio Catalítico , Sítios de Ligação , Especificidade por Substrato , Coenzima A/metabolismo , Coenzima A/química , Ligação Proteica
13.
Mol Microbiol ; 121(4): 742-766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204420

RESUMO

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax volcanii/genética , Glucose/metabolismo , Redes e Vias Metabólicas , Glicoproteínas de Membrana/metabolismo , Fenótipo , Proteínas Arqueais/metabolismo
14.
mBio ; 15(2): e0309223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189270

RESUMO

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Assuntos
Archaea , Proteínas Arqueais , Archaea/genética , Archaea/metabolismo , Genes Essenciais , Genoma Arqueal , Genômica , Fenótipo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
15.
Microbiol Spectr ; 11(6): e0281123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909787

RESUMO

IMPORTANCE: Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.


Assuntos
Compostos de Amônio , Proteínas Arqueais , Methanosarcina/genética , Methanosarcina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo
16.
Genes (Basel) ; 14(10)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895209

RESUMO

Tubulin, an extensively studied self-assembling protein, forms filaments in eukaryotic cells that affect cell shape, among other functions. The model archaeon Haloferax volcanii uses two tubulin-like proteins (FtsZ1/FtsZ2) for cell division, similar to bacteria, but has an additional six related tubulins called CetZ. One of them, CetZ1, was shown to play a role in cell shape. Typically, discoid and rod shapes are observed in planktonic growth, but under biofilm formation conditions (i.e., attached to a substratum), H. volcanii can grow filamentously. Here, we show that the deletion mutants of all eight tubulin-like genes significantly impacted morphology when cells were allowed to form a biofilm. ΔftsZ1, ΔcetZ2, and ΔcetZ4-6 created longer, less round cells than the parental and a higher percentage of filaments. ΔcetZ1 and ΔcetZ3 were significantly rounder than the parental, and ΔftsZ2 generated larger, flat, amorphic cells. The results show all tubulin homologs affect morphology at most timepoints, which therefore suggests these genes indeed have a function.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Haloferax volcanii/metabolismo , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biofilmes
17.
Carbohydr Res ; 534: 108963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890267

RESUMO

Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.


Assuntos
Archaea , Proteínas Arqueais , Glicosilação , Archaea/metabolismo , Açúcares , Polissacarídeos , Proteínas Arqueais/metabolismo
18.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709673

RESUMO

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Assuntos
Proteínas Arqueais , Pyrococcus furiosus , Pequeno RNA não Traduzido , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Mensageiro/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , RNA Arqueal/metabolismo , Sítios de Ligação , Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pequeno RNA não Traduzido/metabolismo
19.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532685

RESUMO

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Assuntos
Proteínas Arqueais , Halobacteriaceae , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transdução de Sinais , Proteínas Arqueais/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
20.
Environ Microbiol Rep ; 15(6): 530-544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496315

RESUMO

Global transcriptional regulators are crucial for supporting rapid adaptive responses in changing environments. In Thermococcales, the TrmB sugar-sensing regulator family is well represented but knowledge of the functional role/s of each of its members is limited. In this study, we examined the link between TrmBL4 and the degree of protein secretion in different sugar environments in the hyperthermophilic Archaeon Thermococcus barophilus. Although the absence of TrmBL4 did not induce any growth defects, proteomics analysis revealed different secretomes depending on the sugar and/or genetic contexts. Notably, 33 secreted proteins present in the supernatant were differentially detected. Some of these proteins are involved in sugar assimilation and transport, such as the protein encoded by TERMP_01455 (cyclomaltodextrin glucanotransferase), whereas others have intracellular functions, such as the protein encoded by TERMP_01556 (pyruvate: ferredoxin oxidoreductase Δsubunit). Then, using reverse transcription quantitative polymerase chain reaction experiments, we observed effective transcription regulation by TrmBL4 of the genes encoding at least two ABC-type transporters according to sugar availability.


Assuntos
Proteínas Arqueais , Thermococcus , Thermococcus/genética , Thermococcus/metabolismo , Secretoma , Carboidratos , Açúcares/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA